4. Discussion

In the theoretical explanation of the pressure dependence of T_{c} our approach is similar to those of Novaković [6] and Bline and Žekš [7], but our derivation is based on Kobayashi's dynamic theory [9, 10] which at present seems to be the most satisfactory theory for $\mathrm{KH}_{2} \mathrm{PO}_{4}$-type ferroelectrics. In this theory the total Hamiltonian is of the form $\bar{H}=H_{\mathrm{P}}+H_{\mathrm{L}}+H_{\mathrm{PL}}, H_{\mathrm{P}}$ describing the proton tunneling motion in the double minimum potentials along the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds, H_{L} the lattice vibrations, and H_{PL} the coupling between tunneling motion and lattice vibrations. The tumneling term is generally expressed as [5]

$$
\begin{equation*}
H_{\mathrm{P}}=-2 \Omega \sum_{l} X_{l}-\frac{1}{2} \sum_{l l^{\prime}} J_{l l^{\prime}} Z_{l} Z_{l^{\prime}} \tag{1}
\end{equation*}
$$

X_{l} and Z_{l} being components of the pseudo-spin, Ω the tunneling energy, and $J_{l l^{\prime}}$ the parameters of the proton-proton coupling which favours the formation of the ferroelectric state.

The transition temperature T_{c} is defined as the temperature at which the frequency of the ferroelectric mode, which is a coupled proton tunneling and optical lattice vibration mode, tends to zero. T_{c} is determined by the equation $[9,10]$

$$
\begin{equation*}
4 \Omega-J \tanh \frac{\Omega}{k T_{\mathrm{c}}}=0 \tag{2}
\end{equation*}
$$

where $J=\Sigma_{l^{\prime}} J_{l l^{\prime}}+J_{\mathrm{L}}$ and k is Boltzmann's constant. The part J_{L} which results from the proton-lattice coupling has been explicitly given by Kobayashi [9] and Cochran [10]. For $J_{\mathrm{L}}=0$ equation (2) reduces to the equation for T_{c} in the molecular-field approximation of the tumneling model [12]. This approximation has been used by Novaković [6] for his investigation assuming J to be pressure-independent.

In the case of pressure application, the distance 2ζ between the two equilibrium sites in the double minimum potential is reduced, the values Ω and J are varying, resulting in a variation of T_{c}. Hence we have

$$
\begin{equation*}
\frac{\mathrm{d} T_{\mathrm{c}}}{\mathrm{~d} p}=\left(\frac{\partial T_{\mathrm{c}}}{\partial J} \frac{\partial J}{\partial \zeta}+\frac{\partial T_{\mathrm{c}}}{\partial \Omega} \frac{\partial \Omega}{\partial \zeta}\right) \frac{\partial \zeta}{\partial p} . \tag{3}
\end{equation*}
$$

From equation (2) we derive

$$
\begin{equation*}
\frac{\partial T_{\mathrm{c}}}{\partial J}=\frac{k}{4}\left(\frac{T_{\mathrm{c}}}{\Omega} \sinh \frac{\Omega}{k T_{\mathrm{c}}}\right)^{2} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial T_{\mathrm{c}}}{\partial \Omega}=-\frac{T_{\mathrm{c}}}{\Omega}\left(\frac{k T_{\mathrm{c}}}{2 \Omega} \sinh \frac{2 \Omega}{k T_{\mathrm{c}}}-1\right) \leqq 0 . \tag{5}
\end{equation*}
$$

The dependence of J on ζ is known from the papers of Bline et al. $[7,8]$ and Kobayashi [9]: J $\sim \zeta^{2}$, thus $\mathrm{d} J / \mathrm{d} \zeta=2 J / \zeta$. For the simple double minimum potential composed of the potentials of two harmonic oscillators (mass m,

